67 research outputs found

    Genetic algorithms in data analysis

    Get PDF

    Multichannel management : de stand van zaken

    Get PDF
    Dit rapport geeft een overzicht van multichannel management (MCM) vanuit drie verschillende invalshoeken, namelijk vanuit het perspectief van de klant, de organisatie en de technologie. Alvorens elk van de invalshoeken toe te lichten, is er eerst een introductie over MCM op basis van verschillende wetenschappelijke onderzoeksgebieden. Bij het klantperspectief zijn vooral aspecten als kanaalkeuze, gebruik en beĂŻnvloeding van het kanaalgedrag van belang. In het organisatieperspectief staat het huidige beleid van overheidsinstellingen op het gebied van MCM centraal. Tot slot geeft dit rapport een overzicht van de huidige technologische oplossingen voor MCM. Bij elk van deze invalshoeken worden inzichten uit de wetenschap en de praktijk meegenomen

    Architecture Analysis

    Get PDF
    This chapter also explains what the added value of enterprise architecture analysis techniques is in addition to existing, more detailed, and domain-specific ones for business processes or software, for example. Analogous to the idea of using the ArchiMate enterprise modelling language to integrate detailed design models, the chapter demonstrates that analysis, when considered at a global architectural level, can play a role in the integration of existing detailed techniques or of their results

    Case Studies

    Get PDF
    To obtain input from practice and to validate the concepts and techniques explained in the previous chapters, several partner-specific case studies have been executed. These have also served as an important means for knowledge transfer from research to practice. This chapter will elaborate on three of these case studies

    Paving the way towards future-proofing our crops

    Get PDF
    To meet the increasing global demand for food, feed, fibre and other plant-derived products, a steep increase in crop productivity is a scientifically and technically challenging imperative. The CropBooster-P project, a response to the H2020 call ‘Future proofing our plants’, is developing a roadmap for plant research to improve crops critical for the future of European agriculture by increasing crop yield, nutritional quality, value for non-food applications and sustainability. However, if we want to efficiently improve crop production in Europe and prioritize methods for crop trait improvement in the coming years, we need to take into account future socio-economic, technological and global developments, including numerous policy and socio-economic challenges and constraints. Based on a wide range of possible global trends and key uncertainties, we developed four extreme future learning scenarios that depict complementary future developments. Here, we elaborate on how the scenarios could inform and direct future plant research, and we aim to highlight the crop improvement approaches that could be the most promising or appropriate within each of these four future world scenarios. Moreover, we discuss some key plant technology options that would need to be developed further to meet the needs of multiple future learning scenarios, such as improving methods for breeding and genetic engineering. In addition, other diverse platforms of food production may offer unrealized potential, such as underutilized terrestrial and aquatic species as alternative sources of nutrition and biomass production. We demonstrate that although several methods or traits could facilitate a more efficient crop production system in some of the scenarios, others may offer great potential in all four of the future learning scenarios. Altogether, this indicates that depending on which future we are heading toward, distinct plant research fields should be given priority if we are to meet our food, feed and non-food biomass production needs in the coming decades

    CALYPSO 2019 Cruise Report: field campaign in the Mediterranean

    Get PDF
    This cruise aimed to identify transport pathways from the surface into the interior ocean during the late winter in the Alborán sea between the Strait of Gibraltar (5°40’W) and the prime meridian. Theory and previous observations indicated that these pathways likely originated at strong fronts, such as the one that separates salty Mediterranean water and the fresher water in owing from the Atlantic. Our goal was to map such pathways and quantify their transport. Since the outcropping isopycnals at the front extend to the deepest depths during the late winter, we planned the cruise at the end of the Spring, prior to the onset of thermal stratification of the surface mixed layer.Funding was provided by the Office of Naval Research under Contract No. N000141613130
    • 

    corecore